Pursuit of No-till Organic Edible Dry Bean Production in Southern Idaho

Ernie's Organics Background

- In operation since 1983
- Producing edible beans since late 1980s
- Certified Organic since 1996
- Concerns
 - Soil Health
 - Desire to reduce the frequency and intensity of tillage
 - Increase diversity
 - Keep a living root in the ground
 - Labor and Cost of Production

The Goal

To develop a production system with:

- A cold-season cover crop species having a maturity date early enough to be terminated with a roller crimper in late May,
- That provides a weed-suppressing mulch mat,
- That is compatible with dry beans planted via no-till methods,
- That has minimal long-term consequences for other crops in rotation,
- And that is profitable!

(Pray)

Roller-Crimp Cereal Rye, Plant

Monitor

Soil Health Testing

Our Approach

Success?

Plant

- ~100-130 lbs/acre
- ~119k plants/acre (85% germ)

Ideal Case: 145k plants/acre

Monitor

- Soil temperatures
- Emergence

- Soil health testing
 - PFLA
 - Haney

Name:	BRAD JOHNSON
Company:	
Address:	
ty, State, ZIP:	

Grower:	BROSSY	
Field ID:	0-6	
Sample ID 1:	-	
Sample ID 2:		
Sample Depth:	0-6	

HANEY SOIL HEALTH ANALYSIS

Nitrogen												Pho	sphorus		
H3A Extract H2O Extract									H3	A Extract		-			
Lab#	Nitrate	Ammonium	Inorg. N	Total N	Org. N	Org. N:	Org. N Rel.	Org. N Res.	Avail. N	Total P	Inorg, P	Org. P	Org. P Rel	Org. P Res.	Avail, P
Lau #	ppm NO3-N	ppm NH4-N	ppm N	ppm N	ppm N	inorg. N	ppm N	ppm N	lbs/A	ppm P	ppm P04-P	ppm P	ppm P	ppm P	lbs/A
6234	7.1	2.4	9.5	29.3	20.5	2.32	6.5	14.0	28.6	68.0	63.5	4.5	1.1	3.4	148.5
Rank						3 3									

П	Other Soil Measures									Fer	tility				
1				H3A Extract											
Lab#	Fig. 100	Buffer pH	Soluble Salt	Excess	Soil OM	Potassium	Calcium	Magnesium	Sodium	Zinc	Manganese	iron	Copper	Aluminum	Sulfur
Lau w	1:1	Mod. WDRF	mmho/cm	Lime	% LOI	ppm K	ppm Ca	ppm Mg	ppm Na	ppm Zn	ppm Mn	ppm Fe	ppm Cu	ppm Al	ppm S
6234	8.1		0.23	NONE	1.6	238	797	231	66	1.18	12.8	50	0.33	134	12.40
Rank															

	Soil Health							ogen C	ompari	son	Reviewer Comments
		н	20 Extract				Traditional	Haney	Differ.	Savings	
Lab#	Soil Resp.	Org. C	MAC	C:N	SHC	Cover Crop	N	N	N	N	
Lau w	ppm CO2-C	ppm C	%	Care	SHC	Suggestion	lbs/A	lbs/A	lbs/A	S/A	
6234	16.8	213	7.9	10.43	8.00	50% Legume 50% Grass	12.7	28.6	16.0	10.21	
Rank						· · · · · · · · · · · · · · · · · · ·					

	Inten	Intended		N Credits, lbs/A		Fertility Recommendations, lbs of Required Nutrients per Acre									
Lab#	Crop	Yield Goal	Past Crop	Subsoil	Haney	N	P205	K20	S	Zn	Mg	Fe	Mn	Cu	Lime T/A
-							_		-			-		-	_
-		_	\vdash			-	-	_	_	-	_	-	_		-

Date: 8/4/2021

Recommendations Provided by Regen Ag Lab, LLC Analysis Performed by Regen Ag Lab, LLC

Regen Ag Lab, LLC 31740 Hwy 10, Pleasanton NE 68866

Gain Ground

308-440-1681 regenaglab.com

How many consumable organic sugars are available to sustain soil life?

Soil Health Testing

Account No.:	516	Name:	BRAD JOHNSON
Invoice No.:		Company:	
Date Received:	8/2/2021	Address:	#EUROPAGNEONE 10000 FO FO E D 21
Date Reported:	8/4/2021	City, State, ZIP:	

PLFA ANALYSIS REPORT

	Value	Rank
Total Biomass, PLFA ng/g soil	3528.47	VERY GOOD
Functional Group Diversity Index	1.427	GOOD

		u	v	e,	d	г	10	11	ıĸ		

Value

0.7893

All Bact

1.0855

2.3066

38.2346

All Pre16:1

GOOD-VERY GOOD Ratios

	ì			
Functional Group	<u>Value</u>	<u>Units</u>	% of Total Biomass	Community
Total Bacteria	715.62	PLFA ng/g	20.28	Fungi:Bacteria
Gram +	328.40	PLFA ng/g	9.31	Protozoa:Bacteria
Actinomycetes	44.08	PLFA ng/g	1.25	Gram+:Gram-
Gram -	343.13	PLFA ng/g	9.72	
Total Fungi	564.84	PLFA ng/g	16.01	Stress Indicators
Arbuscular Mycorrhizal	423.09	PLFA ng/g	11.99	Sat:Unsat
Saprophytic	141.74	PLFA ng/g	4.02	Mono:Poly
Protozoa	0.00	PLFA ng/g	0.00	Pre 16:Cyclo 17
Undifferentiated	2248.02	PLFA ng/g	63.71	Pre 18:Cyclo 19

Undifferentiated	2248.02	PLFA ng/g	63.71	Pre 18:Cyclo 19	All Pre18:1	VERY ACTIVE
Reviewer Comments						
neviewer comments						

Regen Ag Lab, LLC 31740 Hwy 10, Pleasanton NE 68

Gain Ground

308-440-1681 regenaglab.com

Rank

EXCELLENT

VERY POOR

IDEAL

LOW

GOOD

VERY ACTIVE

2021 Yield Results

Max Pinto

	Seeding	Dirt wt.	Clean
	Rate	yield	yield
Variety	(seeds/ft)	(lbs/ac)	(lbs/ac)
Othello Pinto	4	1356	1084
Quincy Pinto	4	1136	908
Max Pinto	4	1977	1580
Agassiz Pinto	4	1787	1429

Factors affecting yield

- Late planting (June 12-14)
- Late emergence (dry soil)
- High cleanouts in all varieties from frost Sept. 3 & 4, especially Quincy (Frost damage = orange beans in photo)

Challenges/Questions

• Firm soil?

• Cool soil?

Frost susceptibility?

Rye allelopathy?

Rye termination?

ARTICLE

Effects of a fall rye cover crop on weeds and productivity of *Phaseolus* beans

Heather E. Flood and Martin H. Entz

Abstract: Fall-seeded tye & Scoale coreale) is known to suppress weeds through physical and allelopathic properties. This study examined the effects of fall pre-curve crops on weed and dry bean pleasonla valgarily productivity over four site-years in Manitoba. In addition to tye, we tested early versus late spring the termination times as well as herbicide use in a factorial experiment with four replicates, in the absence of herbicides, type reduced early-season broadleaf and grassy weed plant populations by 448–72% and 438–88%, respectively. Terminating the at the four-leaf stage (~100 kg dry matter ha-³) parvided the same level of weed suppression as termination at booting (~300 kg dry matter ha-³). Early type termination increased bean plant populations (significant at three out of four sites), bean bornass (two out of four sites), and bean pidel (three out of four sites) compared with later termination. Lower bean yield with type at one site-year was attributed to dry early season ounditions, where revendued sold water content. While the type cover-crop provided multiple benefits to bean production, early termination resulted in the best agronomic outcome. Rye was beneficial to weed control even when herbicides were used.

Key words: integrated weed management, soil conservation, pulse crop agronomy

Résumé : On sait que le seigle (Scale cereale) semé à l'autonime supprime les mauvaises herbes grâce à ses propriétés physiques et allélopathiques. Les auteurs ont examiné les effets d'une culture abri de seigle d'autonine sur les adventices et sur le rendement du hariot (Plassedus vulgart) à quatre site-samées, au Manitoba. Outre le seigle, ils out testé l'interruption de la culture au début ou à la fin du printemps, ainsi que l'usage d'un herbici de dans le cadre d'une expérience factorielle nétrérée quatre fois. En l'absence d'herbiciels, le seigle réduit respectivement les peuplements de dionyiédones et d'herbacés muisibles de 44 à 72 % et de 43 à 88 % en début de saison. Quand on coupe le seigle au stade de la quartiemé feuille (~1100 kg de maitère séche par hectare), comparaisement à une interruption plus tardive, l'interruption précece de la culture accruit le peuplement de hariotots (de façon significative à trois sites sur quatre), le développement de la culture (tous les sites), la biomasse du hariot (deux sites au quatre) et le rendement grainier (trois sites sur quatre), le rendement plus faible du hariot observé une année à un site ensemencé avec du seigle a été attribué à la sécheresse qui a sévi en début de saison, le seigle ayant diminue la quantité d'eaut disponible dans le sol Blem que auture l'act présente maints avantages pour le hariot, c'est son interruption hâtive qui engendre les meilleurs résultats du point de vue de l'agronomie. Le seigle rehausse la butte contre les manites en de manite de la regardance de la Rédaction)

Mots-clés: lutte intégrée contre les mauvaises herbes, conservation du sol, légumineuses, agronomie

Introduction

Southern Manitoba is Canada's most important dry bean (Phasolus vulgaris L.) growing region, with over 100 000 acres produced annually. Challenges to dry bean production in Manitoba include weeds, salinity, spring soil erosion, excess water in the spring, and loss of soil quality due to rotation of beans with other low residue crops such as potato (Solamim tuberosum). There is a growing interest in using cover crops to address these

Winter or fall rye (Secale cereale L.) has been tested as a cover crop in dry beans (P. vulgaris) (Wagner-Riddle et al. 1994: Liebman et al. 1995: Bottenberg et al. 1997:

Received 28 June 2018. Accepted 21 September 2018.

H.E. Flood. Global Ag. Services Inc., Waimea, HI 96796, USA

M.H. Entz. Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Corresponding author: Martin Entz (email: M.Entz@umanitoba.ca)

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from Rightslink

Can. J. Plant Sci. 99; 22-33 (2019) dx.doi.org/10.1139/cjps-2018-0161

Published at www.nrcresearchpress.com/cjps on 5 October 2018.

Future Work

2022:

- Elwha winter spelt rolled CC mulch
- Trial other varieties
 - USDA Rattler pinto
 - Island pinto
 - Max pinto?
 - UC Southwest Red heirloom
- Automated soil temp data collection?

Beyond 2022:

- Trial other species for rolled CC mulch
 - Austrian winter peas
 - Other cereal rye varieties
 (ND Gardner, Spooner, Aroostook, Hazlet)
- Trial other dry bean varieties
- Develop framework for future breeding program??
- Application to conventional production systems?

Potential Funding Sources

- Western SARE Farmer/Rancher
- Organic Farming Research Foundation
- NRCS Conservation Innovation Grant?
- Others? (What can you suggest?)
- Currently assembling a Technical Advisory Group

Thank You!

- The Nature Conservancy for logistical and financial support
- Cheering Squad

Jackie Jameson

Marvin Gartner

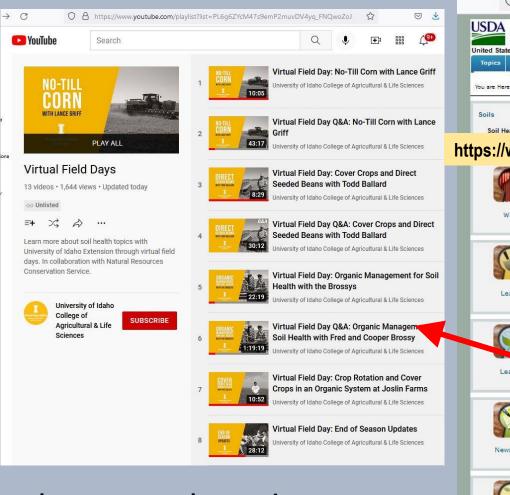
John Dean

Steve Schuyler

Marlon Winger

Amy Mattias

Bill Bitzenburg


U of Wisc-OGRAIN, Dr. Erin Silva

Rodale Institute—Lea Vereeke

...and others!

For more information:

Please reach out! erniesorganics@gmail.com

